Fà a Di Bruno Hopf Algebras

ثبت نشده
چکیده

Fà a di Bruno (Hopf, bi)algebras appear in several branches of mathematics and physics, and may be introduced in several ways. Here we start from exponential power series like f (t) = ∞ n=1 f n n! t n , with f 1 > 0. In view of Borel's theorem, one may regard them as local representatives of orientation-preserving diffeomorphisms of R leaving 0 fixed. On the group G of these diffeomorphisms we consider the coordinate functions

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorial Hopf algebras from PROs

We introduce a general construction that takes as input a so-called stiff PRO and that outputs a Hopf algebra. Stiff PROs are particular PROs that can be described by generators and relations with precise conditions. Our construction generalizes the classical construction from operads to Hopf algebras of van der Laan. We study some of its properties and review some examples of application. We g...

متن کامل

NOTES ON REGULAR MULTIPLIER HOPF ALGEBRAS

In this paper, we associate canonically a precyclic mod- ule to a regular multiplier Hopf algebra endowed with a group-like projection and a modular pair in involution satisfying certain con- dition

متن کامل

A one-parameter deformation of the Farahat-Higman algebra

We show, by introducing an appropriate basis, that a one-parameter family of Hopf algebras introduced by Foissy [Adv. Math. 218 (2008) 136-162] interpolates beetween the Faà di Bruno algebra and the Farahat-Higman algebra. Its structure constants in this basis are deformation of the top connection coefficients, for which we obtain analogues of Macdonald’s formulas.

متن کامل

Hopf Algebras of Formal Diffeomorphisms and Numerical Integration on Manifolds

B-series originated from the work of John Butcher in the 1960s as a tool to analyze numerical integration of differential equations, in particular Runge–Kutta methods. Connections to renormalization have been established in recent years. The algebraic structure of classical Runge–Kutta methods is described by the Connes–Kreimer Hopf algebra. Lie–Butcher theory is a generalization of B-series ai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005